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Abstract
We investigate the electronic and superconducting properties of a negative-U
Hubbard model. For this purpose we evaluate a recently introduced variational
theory based on Gutzwiller-correlated BCS wavefunctions. We find significant
differences between our approach and standard BCS theory, especially for the
superconducting gap. For small values of |U |, we derive analytical expressions
for the order parameter and the superconducting gap which we compare to exact
results from perturbation theory.

1. Introduction

Gutzwiller-correlated wavefunctions [1] were originally proposed for a variational examination
of the one-band Hubbard model [2]

Ĥ =
∑

i �= j

∑

σ=↑,↓
ti, j ĉ

†
iσ ĉ jσ + U

∑

i

n̂i↑n̂i↓ = Ĥkin + ĤU (1)

with positive Coulomb repulsion U . Here, i and j are sites of the respective lattice under
investigation and ĉ†

iσ (ĉiσ ) creates (annihilates) an electron with spin σ = ↑,↓. As usual,
n̂iσ = ĉ†

iσ ĉiσ counts the number of σ -electrons on site i .
Gutzwiller’s primary intention was to study ferromagnetism in such a system.

Unfortunately, the evaluation of expectation values for Gutzwiller’s variational wavefunction
still poses a generally unsolvable many-particle problem. Gutzwiller introduced an
approximate evaluation scheme, the so-called Gutzwiller approximation, which was based
on phenomenological counting arguments; for a mathematically sound introduction to this
technique, see [3]. More recent research on Gutzwiller wavefunctions focused on the
development of better controlled evaluation schemes. The main progress was made in the
limit of infinite spatial dimensions [4, 5], where the Gutzwiller approximation turned out to
be exact in some cases [6].
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Despite its general importance as the most simplistic model for correlated electron systems,
the one-band Hubbard model is only of limited use for the investigation of real materials.
Therefore, a second aim was the evaluation of more general Gutzwiller wavefunctions for
multi-band models. Such a theory has first been derived in [7] and was later used in numerical
studies on nickel [8, 9]. The results of these numerical investigations are in excellent agreement
with experiments and represent a major improvement over band-structure calculations based
on the local-spin-density approximation to density-functional theory.

Since the advent of high-temperature superconductivity about 20 years ago, Gutzwiller
wavefunctions have been used for the investigation of systems with proposed attractive
interactions, most notably the two-dimensional t–J -model [10–12]. For the evaluation of these
Gutzwiller-correlated BCS wavefunctions approximations have been used which were based
on counting arguments similar to the original Gutzwiller approximation. In [9] we developed
a general theory for the evaluation of superconducting multi-band Gutzwiller wavefunctions
in infinite spatial dimensions. An application of these general results to real materials requires
significant numerical efforts. In this report we present first results on the simplest correlated
electron system that exhibits superconductivity, the attractive Hubbard model. The same
system has been studied using Gutzwiller-correlated wavefunctions in [13], based on an
evaluation scheme first derived in [14]. For the attractive one-band Hubbard model with a
Gaussian density of states, the numerical results of both methods seem to agree. Unfortunately,
we cannot provide a rigorous proof for the equivalence of both approaches. Since the evaluation
scheme used in [13, 14] cannot be generalized easily to more realistic model systems, we do
not further pursue their approach.

We structure our paper follows. In section 2 we introduce the Gutzwiller-correlated
superconducting wavefunctions for the negative-U Hubbard model and derive analytical
expressions for the variational ground-state energy. The minimization of this energy is
discussed in section 3. In particular, we derive an effective one-particle Hamiltonian, which
provides a link to ARPES experiments. In section 4 we focus on the half-filled Hubbard model.
We discuss the small-|U | limit analytically and provide numerical results for a system with a
semi-elliptic density of states. A summary in section 5 closes our presentation.

2. Superconducting Gutzwiller wavefunctions

We consider the Gutzwiller wavefunction

|�G〉 ≡
∏

i

P̂i |�0〉. (2)

Here, |�0〉 is a normalized quasi-particle vacuum and the local correlator

P̂i ≡ P̂ =
∑

I,I ′
λI,I ′ |I 〉i i〈I ′| (3)

induces transitions at the lattice site i between the four atomic states |I 〉, i.e., the empty state
|∅〉, the doubly occupied state |d〉 and the two single-electron states |σ 〉 = |↑〉, |↓〉. We denote
expectation values with respect to |�G〉 and |�0〉 as 〈· · ·〉G and 〈· · ·〉0, respectively. In general,
there are 16 variational parameters λI,I ′ . When we assume that there is no magnetic or charge
order in the system, it is sufficient to work with only four independent and real parameters:
(i) λ∅ ≡ λ∅,∅, (ii) λ1 ≡ λ↑,↑ = λ↓,↓, (iii) λd ≡ λd,d , and (iv) λB ≡ λd,∅ = λ∅,d . It can be
shown that a more general ansatz with complex parameters λI,I ′ does not lead to a variational
improvement. As shown in [9] the four parameters are not independent. Instead, they obey
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the constraints

1 = 〈P̂2
i 〉0

n0 = 〈ĉ†
iσ P̂2ĉiσ 〉0,

�0 = 〈ĉ†
i↑ P̂2 ĉ†

i↓〉0.

(4)

Here, n0 and �0 are the elements of the uncorrelated local density matrix

n0 = 〈ĉ†
iσ ĉiσ 〉0, �0 = 〈ĉ†

i↑ĉ†
i↓〉0 (5)

which we assume to be independent of the site index i and the spin index σ . The evaluation
of equations (4) leads to

1 = (λ2
∅ + λ2

B)m∅,0 + 2λ2
1m1,0 + (λ2

d + λ2
B)d0 + 2�0(λ∅ + λd)λB ,

n0 = (λ2
∅ + λ2

B)m1,0 + λ2
1d0,

�0 = λ2
1�0 − (λ∅ + λd)λBm1,0,

(6)

with the expectation values

d0 ≡ 〈n̂i↑n̂i↓〉0 = n2
0 + �2

0,

m1,0 ≡ 〈n̂i↑(1 − n̂i↓)〉0 = n0 − d0,

m∅,0 ≡ 〈(1 − n̂i↑)(1 − n̂i↓)〉0 = 1 − 2m1,0 − d0.

(7)

We use these equations in order to express the three parameters λ∅, λ1, and λB in terms of the
fourth parameter λd ,

λ2
1 = 1 + x(d0 − n0),

λ2
∅ = λ2

d − x(1 − 2n0),

λ2
B = 1 − λ2

d + xm∅,0.

(8)

Here, we introduced the abbreviation

x = B

2A2

(√
1 − 4A2C

B2
− 1

)
(9)

with

A = �2
0 + (1 − 2n0)m∅,0,

B = −4λ2
d�

2
0m∅,0 + 2A(1 − λ2

d)(1 − 2n0),

C = (1 − λ2
d)((1 − 2n0)

2(1 − λ2
d) − 4�2

0λ
2
d).

(10)

The expectation value of the Hamiltonian (1) for the Gutzwiller wavefunction (2) can be
evaluated in the limit of infinite spatial dimensions [9]. For a hopping term this evaluation
yields

〈ĉ†
i,σ ĉ j,σ 〉G = q2〈ĉ†

i,σ ĉ j,σ 〉0 + q̄2〈ĉi,σ ĉ†
j,σ 〉0 + qq̄(〈ĉ†

i,σ ĉ†
j,σ 〉0 + 〈ĉi,σ ĉ j,σ 〉0) (11)

where

q = q(λd, n0,�0) = λ1(λ∅(1 − n0) + λd n0) + 2λB�0λ1, (12)

q̄ = q̄(λd , n0,�0) = �0λ1(λd − λ∅ + λB)(1 − 2n0) (13)

are renormalization factors for normal and anomalous hopping. The expectation value of the
Hamiltonian (1) then reads

Evar = 〈Ĥ 〉G = Q〈�0|Ĥkin|�0〉 + Ud ≡ QE0
kin + Ud, (14)

with

Q ≡ q2 − q̄2, d = λ2
d d0 + λ2

Bm∅,0 + 2λBλd�0. (15)
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3. Minimization procedure

The variational energy has to be minimized with respect to λd and |�0〉 whereby the
equations (5) and the normalization of |�0〉 need to be obeyed. For this purpose we introduce
Lagrange parameters ηn, ηs and ESP. Furthermore, we keep the average number of particles

n̄ = N

L
≡ n(λd , n0,�0) = (2λ2

1m1,0 + 2d) (16)

fixed by means of a Lagrange parameter µ. The minimization problem then becomes

Evar
0 = Minimum

λd ,ηn,ηs,µ,|�0〉

[
Evar − ESP(〈�0|�0〉 − 1) − ηs

∑

i,σ

(�0 − 〈�0|ĉ†
i,↑ĉ†

i,↓|�0〉 + c.c.)

− ηn

∑

i,σ

(n0 − 〈�0|ĉ†
i,σ ĉi,σ |�0〉) + µL(n̄ − n(λd , n0,�0))

]
. (17)

The minimization with respect to |�0〉 can be carried out explicitly and leads to an effective
Schrödinger equation in momentum space,

Ĥ eff |�0〉 = ESP|�0〉, (18)

Ĥ eff =
∑

k,σ

εk ĉ†
kσ ĉkσ + ηs

∑

k

(ĉ†
k↑ĉ†

−k↓ + h.c.), (19)

with

εk = ηn + Qε0
k ,

ε0
k = 1

L

∑

i, j

ti, j e−ik(i− j). (20)

The one-particle Schrödinger equation (18) is readily solved,

Ĥ eff =
∑

k

Ek(ĥ
†
k,0ĥk,0 + ĥ†

k,1ĥk,1) + constant, (21)

by means of a Bogoliubov transformation

ĉk,↑ = ukĥk,0 + vk ĥ†
−k,1,

ĉ†
−k,↓ = −vk ĥk,0 + ukĥ†

−k,1.
(22)

Here, the real coefficients uk and vk and the energies Ek are determined by the equations

Ek = εk(u
2
k − v2

k ) − 2ηsukvk, (23)

and

2εkukvk + ηs(u
2
k − v2

k ) = 0, u2
k + v2

k = 1, (24)

which are solved by

Ek = sgn(εk)

√
ε2

k + η2
s = sgn(ε0

k )

√
(Qε0

k + ηn)2 + η2
s ,

uk = 1√
2

√
1 +

εk

Ek
,

vk = −sgn(εkηs)
1√
2

√
1 − εk

Ek
.

(25)

The one-particle state |�0〉 is chosen as the ground state of (21)

|�0〉 =
∏

k(Ek <0)

h†
k,0h†

k,1|vac〉. (26)
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In [9, 15] it was shown that the eigenvalues (25) in the effective Hamiltonian (21) can
be interpreted as quasi-particle energies that might be measured in ARPES experiments.
Therefore, the parameter ηs describes the superconducting gap and Q is a measure for the
band-width renormalization.

When we introduce the uncorrelated density of states

D(ε̃) = 1

L

∑

k

δ(ε̃ − εk) (27)

the elements of the local density matrix (5) can be written as

n0 = 1

2

∫
dε̃ D(ε̃)

(
1 − Qε̃ + ηn√

(Qε̃ + ηn)2 + η2
s

)
, (28)

�0 = ηs

2

∫
dε̃ D(ε̃)

1√
(Qε̃ + ηn)2 + η2

s

, (29)

and the one-particle energy reads

Ekin = Q
∫

dε̃ D(ε̃)ε̃

(
1 − Qε̃ + ηn√

(Qε̃ + ηn)2 + η2
s

)
= QE0

kin. (30)

4. Results for half band-filling

We assume that the density of states is symmetric and focus on the half-filled case in
which certain simplifications occur. By setting ηn = 0 we ensure that 2n0 = n = 1 and
� ≡ 〈c+

i↑c+
i↓〉G = �0. The remaining numerical task is the minimization of the variational

energy

Evar = Q(�0, λd )E0
kin(�0, ηs) + Ud(�0, λd) (31)

with respect to ηs and λd where �0 is given by equation (29). In a pure mean-field BCS
theory we have to set λd = 1 and minimize the energy only with respect to ηs. Note that
for the numerical minimization we found it more convenient to work with the two variational
parameters d and y ≡ ηs/(2Q).

4.1. Comparison with perturbation theory

For small values of U , and, correspondingly, small values of ηs and �0, the minimization can
be carried out analytically. To leading order in ηs and U the variational energy reads

Evar(ηs) ≈ ε0 − |U |
4

− D(0)η2
s ln

(
2ηs

W

)
+ UαU D(0)2η2

s

[
ln

(
2ηs

W

)]2

(32)

with the band-width W and the bare kinetic energy

ε0 = 2
∫ 0

−∞
εD(ε) dε. (33)

The difference between a Gutzwiller and a BCS wavefunction shows up solely in the
respective values of the coefficient αU in (32). It is αU = 1 in standard BCS theory and
αU = 1 − (3U)/(16ε0) < 1 for a Gutzwiller-correlated BCS state. The minimization with
respect to ηs then yields

ηs = W

2
exp

(
−1

2
− 1

D(0)|U |αU

)
. (34)
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In the limit U → 0 the order parameter � ∼ ηs in the Gutzwiller theory is therefore just
renormalized in comparison with the respective BCS parameter

�GW/�BCS ≡ r = exp

(
− C

D(0)

)
. (35)

An exact calculation of � by means of perturbation theory [16]3 yields the same functional
form, equation (35), however with a different parameter C . It is C = 3/(16|ε0|) in the
Gutzwiller theory and

Cexact = 2
∫ ∞

0

∫ ∞

0
dε dε ′ D(ε)D(ε ′)

ε + ε ′ (36)

in the exact evaluation. In the rest of our work we employ a semi-elliptic density of states of
width W = 4t ,

D(ε) = 1

2π

√
4 − ε2, (37)

which is realized in a Bethe lattice with infinite coordination number. For this semi-elliptic
density of states we find Csemi = 9π/128 ≈ 0.221 and Cexact

semi = 4/(3π) ≈ 0.424. We then
have

rsemi = exp

(
−9π2

128

)
≈ 0.4996, (38)

in comparison with the exact value r exact
semi ≈ 0.2636.

Another quantity of interest is the condensation energy, i.e., the energy difference between
the superconducting and the normal ground state. Both in our approach and in perturbation
theory, one finds to leading order in U

Econd ≈ − 1
2 D(0)U 2�2 = r2 EHF

cond. (39)

For the semi-elliptic density of states the condensation energy is therefore overestimated by a
factor of (r/r exact)2, which shows that BCS theory overestimates the condensation energy by
a factor of about 14 for a semi-elliptic density of states whereas Gutzwiller theory is only off
by a factor of four.

4.2. Numerical results

As seen in equation (25) the Gutzwiller–Bogoliubov quasi-particles have a dispersion relation

|Ek | =
√

(Qε0
k )2 + η2

s . The band-width renormalization factor Q in the Gutzwiller theory
deviates only slightly from the uncorrelated BCS value Q = 1, as shown in figure 1. It
has a minimum qmin ≈ 0.95 for medium-size correlation strength |U | ≈ 3. In the limit
U → −∞ the BCS wavefunction itself has the optimum expectation value d ≈ 1/2 of
double occupancies such that the Gutzwiller correlator P̂ cannot achieve any further energy
gain. Therefore, the renormalization approaches unity in this limit. In figure 1 we also
plot the average double occupancy in Gutzwiller and BCS theory (see the inset) as well as
the ratio of these two quantities. For small values of |U | the double occupancies show a
qualitatively different behaviour in both approaches. In Gutzwiller theory we find the well
known linearity (d − 1/4) ∼ U [18] whereas BCS theory gives the typical exponential
dependence, (dBCS − 1/4) ∼ �2

0 ∼ exp[−(1/|U |)]. The BCS value dBCS is smaller than
d only for small values of |U |. For larger |U | the limited flexibility of the BCS wavefunction
leads to an overshooting of the double occupancy.

3 Note that the negative-U Hubbard model at half filling and for a bipartite lattice is equivalent to a Hubbard model
with positive U [17]. Therefore, the superconducting order parameter and the transition temperature can be deduced
from the respective antiferromagnetic properties.
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0.45

d
BCS

d

Figure 1. Renormalization factor Q (solid line) and ratio of double occupancies dBCS/d (dashed
line) as a function of |U |/t . Inset: double occupancies d (solid line) and dBCS (dashed line).
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∆
0 2 4

0.5

0.6

0.7

0.8

0.9

1

η s/η
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Figure 2. Superconducting order parameters for the Gutzwiller wavefunction (solid line) and the
BCS wavefunction (dashed line) as a function of |U |/t . Inset: ratio of the superconducting gaps
in the Gutzwiller and the BCS theory.

In figure 2, we show the values of the superconducting order parameter � in both theories
as a function of U . The inset of this figure shows the ratio of the two superconducting gaps.
Note that in BCS theory we have ηBCS

s = |U |�BCS. The order parameters are quite similar in
both approaches apart from small values of |U | where

lim
|U |→0

�

�BCS
= lim

|U |→0

ηs

ηBCS
s

= r. (40)

Other than the order parameter, the superconducting gaps in both theories differ significantly
over a large range of correlation parameters |U |. Equation (35) shows that BCS theory fails
when the density of states at the Fermi energy D(0) becomes small.

5. Summary

As a first application of our recently developed Gutzwiller theory for superconducting
systems [9] we investigated the attractive Hubbard model. Our variational approach leads to
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the diagonalization of an effective one-particle Hamiltonian, very similar to the corresponding
mean-field BCS theory. Quantitatively, however, the resulting quasi-particle band structure
differs remarkably from the BCS band energies. This observation holds, in particular, for the
superconducting gap in both theories.

In the limit of small Coulomb interaction |U |/t , a comparison of our approach with
perturbation theory shows that Gutzwiller theory reproduces the renormalization of the
superconducting order parameter qualitatively. Quantitatively, the results depend on the bare
density of the states of the system. For the semi-elliptic density of states, for example, our
renormalization of the gap is too small by a factor of about two.

The condensation energy, i.e., the energy difference between the paramagnetic and the
superconducting ground state, is another quantity which is notoriously overestimated in BCS
theory. This holds, in particular, for large U where the condensation energy should approach
zero but diverges in BCS theory. In contrast, our Gutzwiller theory gives the correct order of
magnitude for the condensation energy for all Coulomb strengths.

Apparently, the investigation of superconducting systems with Gutzwiller wavefunctions
leads to a significant improvement over simple BCS-type calculations. Therefore, our approach
should be a useful tool for the investigation of more realistic model systems that exhibit
superconductivity.
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